Energy Performance Contracts

EPC

Where now for domestic energy efficiency policy?

While the UK Government concentrates policy effort on developing new, more flexible energy sources, there is an increasing realisation that there is another side to the equation. Perhaps the single most significant measure we could adopt to secure our energy future and to reduce carbon emissions is to make more efficient use of energy by reducing demand and wasting less.

The UK unnecessarily throws away almost a third of the energy it uses. This represents a major cost to consumers and the environment. Implementing further energy efficiency measures would reduce carbon emissions, create jobs and ultimately save more money than it costs. However, at the household level, policy and schemes that have been tried so far have made little impression on the opportunity.

The Government’s Green Deal scheme was scrapped in 2015 after a disappointing take up. While more than 300,000 assessments were undertaken, less than 2,000 resulted in active projects, a conversion rate of less than 1%. The Green Deal was a ‘pay-as-you-save’ scheme with loans made available to pay for energy efficiency measures. These were to be repaid over a period of up to 25 years through electricity bills from the financial savings that resulted. However, the 7% to 10% APR interest rate charged to home owners proved unattractive, unsurprisingly perhaps given that it was several percentage points higher than ordinary bank loans available at the time. 

So where will Government policy guide us next? High cost loans have not worked. While many householders have implemented low cost energy efficiency measures, it seems that incentives may be necessary to persuade them to go further. The goal must be to encourage them down the route of implementing more effective measures such as insulation, renewables and energy efficient heating, but policy tools are needed to deal with the high capital costs and often long return periods.

Maybe there is a clue towards the future direction of policy travel in a glimmer of hope in the public sector, where there is an increasing interest in Energy Performance Contracts (another ‘EPC’).  These formal partnerships between a public body and its energy services company (ESCO) were introduced by The Energy Efficiency (Encouragement, Assessment and Information) Regulations 2014. The contract covers the design and provision of specific energy-saving measures and on-going monitoring. It guarantees that the measures will generate sufficient savings to pay for the project, ensuring a secured financial saving over the period of the agreement. Any savings beyond the end of the contract go to the customer.

While it is early days, one EPC between E.ON and Leeds City Council is tackling energy efficiency in nine public buildings, including schools, leisure centres and data centres. The seven-year contract is projected to achieve a 26% saving in energy costs through a range of measures, such as new lighting, boiler and voltage optimisation, and upgraded building management systems. E.ON is responsible for the up-front investment, and has guaranteed that the savings over the seven years will cover all equipment and installation costs. In addition to being able to fund the repayments from the savings made, Leeds City Council will see reductions in energy costs over the long-term, improved building performance and the project is helping it meet its own environmental aspirations and obligations as a public sector body.

Book an EPC to find out how you can make your home more energy efficient.

A Proactive Approach to a Passive House

EPC - Passive House

A proactive approach to a Passive House

‘Passive House’ is a standard for a cost-effective, low-energy construction concept that produces buildings with remarkable energy efficiency qualities without compromising on comfort.  

With all of the necessary information published freely on-line, it is claimed that any competent architect can design a Passive House. The standard is also relevant to non-residential buildings such as schools and offices. While it is most simply achieved with a new-build, it can also be successfully applied during a major building renovation.

Passive House buildings combine the use of energy efficient materials, a very high level of floor, window, roof and wall insulation and an airtight design. They are designed to be ‘thermal bridge free’, meaning the insulation has no cold corners or weak spots, reducing any problems with condensation. Ventilation is nevertheless essential, and an unobtrusive system supplies constant fresh air to maintain high levels of internal air quality without creating draughts. It incorporates a highly efficient heat recovery unit that captures heat for re-use in the building.

The designers ensure that the building makes such efficient use of the sun, internal heat sources such as domestic appliances and heat recovery that a conventional heating system is unnecessary, even on the coldest days of winter. This is what defines a Passive House. During the summer, passive techniques such as strategic shading help to keep the building comfortably cool.

Tests and calculations on existing Passive House dwellings are producing some impressive data. Measurements carried out on more than a hundred Passive House properties in central Europe as part of the European Union’s CEPHEUS project showed average energy savings of approximately 90% by comparison with traditional building stock, and 75% savings against new-build equivalents.

As a result, Passive Houses are environmentally friendly by definition. While some additional energy may be required initially for their materials and construction, this is insignificant by comparison with the energy savings they enable throughout the life of the building.

Similarly, the necessary financial investment in high quality materials and design required by the Passive House standard will be offset by the greatly reduced cost of installing and running heating and cooling systems. Calculations for German Passive Houses suggest that initial construction costs are now only approximately 5% higher than those of a comparable traditionally built house. Payback periods of course depend on the size and construction cost of the building, but under most circumstances the reduced running costs are likely to offset the construction costs in two to three decades, even allowing for loan repayments.

The Building Research Establishment (BRE) is one of the certifying bodies for Passive Houses, and there are fewer than a hundred of its Passivhaus buildings in the UK. The ‘Sleepy Dorset’ blog (here) tells the story of one family’s self-build Passive House since 2016 and its successful achievement of Passivhaus status. It relates how the house performed in Dorset’s coldest winter weather for many years in March 2018, and how the family awoke each morning to a comfortable 18ºC without any heating, despite outside temperatures of -6ºC and thick snow.

Draught Proofing – The Cheapest Way to Energy Efficiency

Draught proofing

Dealing with draughts

Draught proofing windows and doors is one of the least expensive ways of increasing the energy efficiency of a home. Some ventilation is required to reduce condensation and prevent mould, but the method should be controllable so that welcoming fresh air in the relative warmth of the day does not become an uncomfortable cold draught by the evening.

As simple as it is, draught proofing is a consideration for an assessor when providing a home with an EPC.

Do not alter external air bricks or wall vents without professional advice, as these may be essential for maintaining the fabric of the building. Flues that are in use for fireplaces or boilers must not be blocked.

Even a slight draught can make a room feel disproportionately chilly in cold weather.  A well-insulated room will feel warmer and more comfortable, often meaning that the thermostat can be turned down a little, doubling up on the energy and cost savings.  For an average house, a thorough draught-proofing job can reduce heating bills by £20 to £30 a year.

This is also one of the easiest home energy efficiency projects to do. A professional job is likely to cost less than £300 for an average house, or most of the measures can be carried out quite simply by householders with the most basic of DIY skills and tools for less than £100.

DIY stores and hardware shops carry a bewildering array of draught proofing materials and it is worth investing in good quality and tested products that carry the BSI kite mark.  The larger stores offer instruction leaflets that help you to choose and install the best products.

Before you start, undertake a detailed audit of places where draughts may be entering your home and make a list and measurements to take to the store.

Amongst the most common sources of draughts are letterboxes and keyholes in external doors. Loft hatches are another common culprit. All are easily dealt with using proprietary products. 

The next group of sources to consider are the unintentional gaps left during building and maintenance:

  • window frames
  • opening windows
  • door frames
  • doors
  • floorboards
  • pipes that lead from rooms to the outside
  • electrical sockets and fittings on walls and ceilings
  • joints where walls meet the ceiling.

Most of these can be dealt with using a suitable flexible silicone sealant. Add self-adhesive draught-proofing strips or brushes around opening windows and use the sealant in any gaps between the frame and the wall. Foam strips do not work well on sliding sash windows, so fit brush strips or consult a professional.

For external doors, buy a drop-down keyhole cover and a letterbox flap or brush. Gaps between the door and the frame can be sealed with foam or brush strips like those used for windows.  A large brush or hinged flap draught excluder will deal with the larger gap at the bottom of the door. Gaps around the frame can be filled with the sealant.

Keeping doors closed is good practice and an old-fashioned draught-excluder can be laid across the bottom of any door to stop the last remnants of draughts and to give a feeling of comfort.

Ten Inexpensive Tips for Keeping Your Home Warm Next Winter

EPC

You may have installed smart heating technology, but as the winter winds whistle around the house and the cost of energy carries on rising what else can you do to keep the temperature up and the bills down?  Here are ten top tips for simple and inexpensive measures that can help to keep your home warm.

1. If you have an open fireplace that is no longer used, install a chimney balloon. They are inflated just out of sight above the fireplace, moulding to the shape of the chimney, providing excellent insulation and preventing draughts. The cost is around £20.

2. Put aluminium foil on walls behind radiators to reflect heat back into the room, especially on external walls. Tests suggest that the payback on good quality radiator reflectors is only two to three years on external walls, a better result than for kitchen foil which deteriorates and is less effective.

3. Move your furniture away from radiators to help with the free circulation of heated air into the room and the return of cooler air along the floor. Natural convection helps to ensure heat is evenly distributed, so consider the distribution of large furniture items around the room, a sort of thermal feng shui.

4. Cover floorboards and wooden floors with carpet and rugs, or at least use a flexible filler in any gaps between the boards. According to research by the National Energy Foundation, uninsulated floors can account for 10% of the heat loss from residential properties.

5. Check if your loft hatch is insulated. Even if you have top-notch loft insulation, the hatch needs similar treatment. Special loft hatches are available, or insulating board can be added to the top of existing hatches.

6. Put up thermal roller blinds or thick curtains with a thermal lining, and keep them closed during hours of darkness. A cheaper option is to add a thermal lining to existing curtains. A thick curtain might also be a useful addition to an old or draughty external door.

7. Open the curtains when the sun is out, and make the most of one greenhouse effect that is good for our environment. Even in winter when it is cold, sunlight coming into the house will warm it up.

8. Add draught-proofing products to all those less obvious nooks where draughts might find a way in. Buy old-fashioned draught excluders to protect the base of doors, they do not all have to be sausage dogs!  Think also about less obvious gaps like letterboxes, cat flaps, keyholes and extractor fans. There are products available in the DIY store to deal with all of them, and home-made alternatives generally require little specialist imagination.

9. Close up any rooms that you are not using or do not really need to use.  Keep the heating on low (never off), but ensure they are ventilated from time to time.

10. If you cannot afford double or triple glazing, or your property is listed and has restrictions, it may be possible to put up insulating film using double-sided tape that has the same effect.  It is inconvenient because you cannot get to the windows to open and close them, and it can start to peel and look tatty after a few months, but it is a good temporary measure at only a few pounds each winter.  Alternatively, secondary glazing is a cheaper, more permanent alternative.

How Long Will Our Gas Last?

EPC

On 1st March 2018, in unusually cold weather, National Grid issued a warning that the UK may not have enough gas to meet demand in the short term. The forecasted requirement of nearly 4,000 million cubic metres for the following day indicated a potential shortfall of approximately 50 million cubic metres. Wholesale prices soared.

The problem was compounded by a number of outages, some of which related to the cold weather. These included on-going problems with a pipeline to the Netherlands, reductions in crucial flows from Norway, and technical issues at the Barrow gas terminal in North West England.

Measures were put in place to procure additional supplies, manipulate the electricity generation mix and to reduce the industrial use of gas temporarily. Some major manufacturing energy users have supply contracts that can be suspended in this way in return for cheaper prices. Fortunately, the onset of warmer weather alleviated some of the pressure and the measures were successful in maintaining supplies to domestic customers on this occasion.

However, the situation had shone a light on the status of gas supply and storage in the UK. Gas storage capacity is at the lowest level since records began in 2006, principally because of the closure of Centrica’s Rough gas storage facility off the East coast under the North Sea. This had been responsible for some 70% of the country’s storage capacity.

Our own gas production form the North Sea fields is reducing, and while liquefied natural gas (LPG) is being imported through facilities in Kent and Pembrokeshire, market prices are increasingly pushing LPG towards a massive demand from Asia. Overall, our daily gas reserves are just a fraction of what they used to be.

Research in 2017 by the University of Edinburgh (here) suggests that recoverable UK oil and gas could run out by 2027. Some analysts believe that global stocks of oil will run out in 2052, and that we will need to use gas to fill the gap, meaning that those reserves too will be used up by 2060. Any new finds are likely to be smaller and more expensive to extract and transport.

A significant proportion of known gas reserves are held or controlled by countries that are not politically allied to the UK, and could hold western Europe to ransom. Others are in politically and socially unstable nations.

British shale gas companies suggest that they could save the day, and hope that UK fracking will finally begin in earnest in 2018. The British Geological Survey believes that UK geology has the potential to provide sufficient shale gas to meet our demand for 25 years, but in the face of opposition and conflicting expert opinion on how much will actually be extracted from the ground, fracking may not be a major or long-term panacea.

In 2018, research headed by an eminent geologist, Professor John Underhill of Heriot-Watt University, suggested that we have overestimated potentially extractable reserves as our tilted and folded geological strata are less likely to hold fossil fuel deposits than unaltered geology, and that any deposits that have formed have been dispersed into small pockets that make them less suitable for extraction.

So should households considering replacement gas boilers, heating and appliances be worried? Despite the price rises, gas is still a reactively cheap fuel. But with its increasing use for electricity generation as we phase out more carbon-intensive coal, and with the proposed replacement nuclear sources taking longer than expected to come on line, how long will the gas last?  And, if stocks dwindle, which of all of the eggs in the gas basket will get priority, electricity generators, essential services, businesses or domestic users?

Policy dictates that domestic consumers should be the last to experience deficits with business customers bearing the brunt of any shortages.  The projections suggest little cause for panic in the short term. Nevertheless, the gas supply system is beginning to show signs of fragility and it does not take much to push its resilience to the limit.  These sound like good reasons for making homes more energy efficient, and for installing a diverse range of energy technologies.

To order an EPC for your home to find out what technologies are best for you, contact Find EPC.

The Importance of Reducing a Carbon Footprint

Carbon Footprint

The other EPC

Most people have financial savings at the forefront of their minds when considering home energy efficiency improvements. Some will have more than a passing thought for the environment.  Whatever the motivation, individual households can make an important contribution towards national energy efficiency goals and greenhouse gas reduction targets. While focussing on the primary meaning of EPC, an Energy Performance Certificate, we should not lose sight of the second, Every Property Counts.

Better energy efficiency brings reductions in carbon dioxide emissions, which account for some three-quarters of the greenhouse gases released into our atmosphere.  Carbon dioxide is produced whenever fossil fuels such as coal, gas and oil are burned to produce energy for transport, heat or electricity generation.

A ‘Carbon Footprint’ is not a buzzword, it is a very important consideration for us all.

The vast majority of scientists now believe that our greenhouse gas emissions are contributing to climate change. They form a blanket in the atmosphere that traps some of the reflected energy from the sun, causing warming that affects the oceans, ice caps, vegetation and weather patterns. This is beginning to have serious consequences for the environment and for the wildlife and people that live within it. Carbon dioxide can persist in the atmosphere for up to 200 years, so even if we take urgent action now, emissions that have already been released that will continue to affect our climate for generations to come.

Some of the consequences of climate change are potentially disastrous. Precipitation is reducing in some areas around the world, causing drought, while others are experiencing increased rainfall and storms, exacerbating sediment runoff into rivers and drinking water supplies, and producing more frequent and severe floods.

Increasing temperatures are melting ice sheets at the poles and causing sea level rise, adding to the risk of flooding at the coast and threatening the very existence of some low-lying islands.  Rising sea levels can also cause saltwater to infiltrate some freshwater systems. 

Overall, climate change is increasing the demand for water while the supply diminishes. In turn, this will affect food production, levels of malnutrition and disease in some of the world’s poorest nations.

Climate change also seems to be contributing to increasing damage from wildfires and tropical storms, so the consequences can be financial as well as social and environmental.

What Can We Do?

One of the best ways of countering climate change is to address the carbon footprint of every country, industry, community and individual household. Well over 10% of the carbon emissions in the UK come from electricity use in private households, so one immediate way to reduce our carbon footprint is to take control of energy wastage. Turn off lights, heating, air conditioning and electrical appliances when they are not needed, unplug chargers, and do not rely on standby settings. Insulate your property, switch to energy efficient light bulbs, put in a smart meter, change to a new and more efficient boiler and use a microwave when possible.

It takes a huge amount of energy to get water to your home too, so conserve it by having shorter showers and turning the tap off while you brush your teeth, and save rainwater for watering the garden.

Individually, each property’s contribution may seem modest, but add them together and they may represent an earth-saving carbon footprint reduction.

Six Common Energy Efficiency Myths

Energy Efficiency

Energy Efficiency Myths

Myth One

If I turn up the thermostat the room will get warm much more quickly.

This is not the case. A thermostat simply controls the maximum temperature, so turning it up will not alter how long the heating takes to achieve that room temperature.

Myth Two

It is more efficient to keep the heating on low all the time than to keep turning it on and off.

This means that your house is heated when you are not there and that it may be cold when you are home. It is far better, in terms of energy efficiency, to use a timer to heat the rooms that you are using while you are there. On a regular daily cycle, it is not necessary to have the heating on constantly to keep the fabric of the house warm. If you are away in winter, use a timer and thermostat to avoid frost damage to pipes. You can use radiator valves to restrict the heating to the rooms that you are using. Most people find 18°C to 21°C comfortable in an occupied room, and radiators can be turned down to 14°C or lower in other rooms.

Myth Three

When it is cold outside I need to turn the thermostat up to keep the house warm.

A thermostat maintains a desired temperature in the house no matter what the weather is doing outside.  Once you have selected your comfortable temperature, it can remain at that setting which improves your home’s energy efficiency.

Myth Four

Energy saving light bulbs take a long time to get bright, and they are very expensive.

There have been improvements in lighting technology in the last few years, especially with light emitting diode (LED) bulbs. They reach full brightness immediately, have reduced in price, typically last for over 20 years and their running costs are approximately a third of those of a comparable traditional halogen bulb.  

LED bulbs are now the best choice in terms of practicality and energy efficiency.

Myth Five

An appliance in standby mode does not use much energy..

Appliances on standby still use electricity. For an average household, turning them all off completely when they are not in use could save nearly £50 a year.

Myth Six

My vital appliances are responsible for much of the energy I use, so there is nothing I can do to reduce consumption.

Large appliances are responsible for about 15% of the energy bill for an average home, so dealing with the energy efficiency of heating is a greater priority. Nevertheless, choosing energy efficient appliances can also make a real reduction in consumption and bills. Compare energy labels on appliances before buying. Choosing an A+++ tumble dryer rather than a C-rated model can save approximately £50 per year.  A new A+++ electric oven will use some 60% less energy than a B-rated equivalent. 

Careful planning of how you use your appliances could also help. Dishwashers are very energy hungry, and can cost an average household nearly £50 a year to run. Consider whether you really need to use it to wash a few plates and make sure you wait for a full load before turning it on.